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Labels

Are the labels that we used in CCS reflecting how a process
interacts?

Our reaction relation ⟶
𝑎

 was indexed by the actions, we redefine
the transition as being indexed by the contexts that permit such
action.

𝑎 ⟶
𝐹

𝑎′ ⇔ 𝐹[𝑎] → 𝑎′

Example:
Instead of ̄𝑥. 𝐴 | 𝐵 ⟶

𝑥
𝐴 we would write ̄𝑥. 𝐴 | 𝐵 ⟶

𝑥.0 | ⋅
𝐴
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The issue

But this does not really capture the the fact that a process requires
such context to react.

For the process ̄𝑥. 𝐴 we could write ̄𝑥. 𝐴 ⟶
𝑥.𝐵+𝑥.𝐶

𝐴 and according
to our definition of ⟶

𝐹
 this would still be correct.

We can have infinite contexts that would trigger a reaction but that
don’t encode any behaviuor.
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Reactive system as a category

Definition Reactive system
A reactive system is a triple (ℂ, 𝔾, React) where
• ℂ is a category
• 0 ∈ |ℂ|
• React ⊆ ⋃𝑚 ℂ(0, 𝑚)2 is the set of reaction rules.
• 𝔻 ⊆ ℂ made of reactive contexts and composition reflecting.

We use the 0 object to identify the arrows 0 → 𝑚 that are the
agents.
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Clearly the issue of “complex” labels is caused by out definiton of
→.

𝑎 ⟶
𝐹

𝑎′ ⇔ 𝐹[𝑎] → 𝑎′

⇔ ∃(𝑙, 𝑟) ∈ React ∃𝐷 𝐹[𝑎] = 𝐷[𝑙] and 𝑎′ = 𝐷[𝑟]

↑𝑎

↑𝑙 ↑𝐹
↑

𝐷

But nothing forces 𝐹  and 𝐺 to be the “smallest” context making the
diagram commute.



6 of 26

The fix
We would like something like:

↑𝑎

↑𝑙 ↑𝐹

↑

𝐷 ↑

𝐹 ′

↑

𝐷′

↑
𝐺

For any other contexts 𝐹′ and 𝐷′ satisfying the same condition as
𝐹  and 𝐷 there exists an unique 𝐺 such that 𝐺 ⋅ 𝐹 = 𝐹′ and
𝐺 ⋅ 𝐷 = 𝐷′.
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If we think back to context we are looking to find the context 𝐹
such that any other context 𝐹′ triggering the same reaction can be
factorized as

𝐺 ⋅ 𝐹 = 𝐹′

where in 𝐺 we have captured all the useless complexity that wasn’t
really needed in 𝐹′ to trigger the reaction.
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Definition Relative pushout
Given a commuting square 𝑔0 ⋅ 𝑓0 = 𝑔1 ⋅ 𝑓1 a relative pushout is a
triple (ℎ0, ℎ1, ℎ) satisfying:
• Commutation: ℎ0 ⋅ 𝑓0 = ℎ1 ⋅ 𝑓1 and ∀𝑖 ∈ {0, 1}ℎ ⋅ ℎ𝑖 = 𝑔𝑖
• Universality: for any other (ℎ0′, ℎ1′, ℎ′) satisfying the

universality constraint ∃!𝑘 such that ℎ′ ⋅ 𝑘 = ℎ and ∀𝑖 ∈ {0, 1}
ℎ′𝑖 ⋅ 𝑘 = ℎ𝑖
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↑𝑓0
↑

𝑓1

↑

𝑔0

↑

𝑔1

• Commuting Square
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↑𝑓0
↑

𝑓1

↑

𝑔0

↑

𝑔1

↑
ℎ0

↑

ℎ1
↑

ℎ

• Commuting Square
• Commutation of the

RPO
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↑𝑓0
↑

𝑓1

↑

𝑔0

↑

𝑔1

↑
ℎ0

↑

ℎ1
↑

ℎ

↑

ℎ0′

↑

ℎ1′ ↑

ℎ′

↑

𝑘 • Commuting Square
• Commutation of the

RPO
• Universality of the RPO
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↑𝑓0
↑

𝑓1

↑

𝑔0

↑

𝑔1

Definition IPO
A commuting square
𝑔0 ⋅ 𝑓0 = 𝑔1 ⋅ 𝑓1 is an
IPO if (𝑔0, 𝑔1, id) is an
RPO.
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↑𝑓0
↑

𝑓1

↑

𝑔0

↑

𝑔1

↑
ℎ0

↑

ℎ1
↑

ℎ

Definition IPO from
RPO
if (ℎ, ℎ1, ℎ2) is an RPO
then the commuting
square ℎ0 ⋅ 𝑓0 = ℎ1 ⋅ 𝑓1
is an IPO.
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Transition

Definition Transition
𝑎 ⟶

𝐹
𝑎′ ⇔ ∃(𝑙, 𝑟) ∈ React ∃𝐷 ∈ 𝔻 such that 𝐹 ⋅ 𝑎 = 𝐷 ⋅ 𝑙 is an

IPO and 𝑎′ = 𝐷[𝑟]

↑𝑎

↑𝑙 ↑𝐹
↑

𝐷

We are fixing the older definition of transition keeping only the
“minimal” labels thanks to the IPO condition.
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Bisimulation

Definition Simulation
𝑆 ⊆ ⋃𝑚 𝐶(0, 𝑚)2 is a simulation ⇔ if ∀(𝑎, 𝑏) ∈ 𝑆 if 𝑎 ⟶

𝐹
𝑎′ then

∃𝑏′ such that 𝑏 ⟶
𝐹

𝑏′ and (𝑎′, 𝑏′) ∈ 𝑆.

Definition Bisimulation
𝑆 is a bisimulation ⇔ 𝑆 and 𝑆−1 are simulations.

Definition Bisimilarity
 ~  is the largest bisimulation.
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Congruence

Definition redex-rpo
ℂ has all redex-rpo if ∀(𝑙, 𝑟) ∈ React, 𝑎, 𝐹 , 𝐷 such that the square
𝐹 ⋅ 𝑎 = 𝐷 ⋅ 𝑙 commutes, the square has an rpo.

Proposition if ℂ has all redex-RPO 𝑎 ~ 𝑏 ⇒ ∀𝐶 𝐶[𝑎] ~ 𝐶[𝑏]
We prove that {(𝐶[𝑎], 𝐶[𝑏]) | 𝑎 ~ 𝑏} is a bisimulation.
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if 𝐶[𝑎] ⟶
𝐹

𝑎′ we have the following IPO

↑𝑎 ↑𝐶

↑

𝐷

↑

𝑙

↑

𝐹



15 of 26

Since ℂ has all redex-RPO

↑𝑎 ↑𝐶

↑

𝐷

↑

𝑙

↑

𝐹
↑𝐹′

↑𝐷′ ↑𝐶′
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Since we can get IPO’s from RPO’s we know that the first diagram
is an IPO, and from IPO-pasting we know that also the second one
is an IPO.

↑𝑎

↑𝐹 ′↑𝑙

↑

𝐷′

↑𝐶

↑𝐹↑𝐹′

↑

𝐶′
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Since 𝑎 ~ 𝑏 we get the commuting diagram

↑𝑏
↑𝐹 ′↑𝑙′

↑
𝐸′
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By IPO pasting on it we get the IPO

↑𝑏 ↑𝐶

↑
𝐸′
↑

𝐶′

↑
𝑙′

↑
𝐹

That implies 𝐶[𝑏] ⟶
𝐹

𝑏′ and 𝑎′ ~ 𝑏′ because 𝑎′ = 𝐶′[𝐷′[𝑟]],
𝑏′ = 𝐶′[𝐸′[𝑟′]] and from 𝑎 ~ 𝑏 we know that 𝐷′[𝑟] ~ 𝐸′[𝑟].
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Usual definitions

We can recover 𝜏 -like and weak transitions:

Definition ⟶
𝐹

2

𝑎 ⟶
𝐹

2
𝑎′ ⇔ {

𝐹[𝑎]⟶𝑎′ if 𝐹 is an isomorphism

𝑎⟶
𝐹

𝑎′ otherwise

Definition ⟹
𝐹

𝑎 ⟹
𝐹

𝑎′ ⇔ {
𝐹[𝑎]⟶∗𝑎′ if 𝐹 is an isomorphism

𝑎⟶
𝐹

⟶∗𝑎′ otherwise

The bisimulations induced by these definition are all congruence.
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Unnecessary labels when we introduce depth

The issue raises when we can nest complete copies of terms that
can reduce by themselves we get labels that are unnecessary.

Consider a ractive system containing the rule (𝛾(𝛼), 𝛼′) using our
usual definition we would get the following reaction rule
𝛼′ ⟶

𝛽(⋅,𝛾(𝛼))
𝛽(𝛼′, 𝛼′)

We can fix the issue by considering multi hole contexts.
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Definition Multi-hole reactive systems
A reactive system is a 4-tuple ((ℂ, ⊗, 0), 𝑍, 𝔾, React) where
• (ℂ, ⊗, 0) is a strictly monodial category.
• 𝑍 ⊆ |ℂ|
• React ⊆ ⋃𝑚∈𝑍 ℂ(0, 𝑚)2 is the set of reaction rules.
• 𝔻 ⊆ ℂ made of reactive contexts and composition reflecting and

𝑎 ⊗ id𝑚 ∈ 𝐷 ∀𝑎 : 0 → 𝑚′

Arrows 0 → 𝑚 are agents and arrows 𝑚 → 𝑚′ are contexts that
take 𝑚 arguments and returns an 𝑚′-tuple of terms (𝑚, 𝑚′ ∈ 𝑍).
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Definition Transition
𝑎 ⟶

𝐹
𝑎′ ⇔ 𝑎, 𝑎′ are agents, 𝐹  is a context and

∃(𝑙, 𝑟) ∈ React ∃𝐷 ∈ 𝔻 such that 𝐹 ⋅ 𝑎 = 𝐷 ⋅ 𝑙 is an IPO and
𝑎′ = 𝐷[𝑟]

↑𝑎

↑𝑙 ↑𝐹
↑

𝐷
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Definition Redex-RPO
ℂ has all redex-RPO if ∀(𝑙, 𝑟) ∈ React and 𝑎 agent, 𝐹 , 𝐷 contexts
such that the square 𝐹 ⋅ 𝑎 = 𝐷 ⋅ 𝑙 commutes, has an RPO such that
either 𝑢 ∈ 𝑍 or ∃𝑘 : 𝑢 → 𝑚0 ⊗ 𝑚1 isomorphism such that such
that 𝑘 ⋅ 𝐹 ′ = id𝑚0

⊗ 𝑙 and 𝑘 ⋅ 𝐷′ = 𝑎 ⊗ id𝑚1
.
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↑𝑎

↑

𝑙

↑

𝐹 ′

↑𝐷′
↑

𝐷

↑

𝐹
↑

𝐺

0 𝑚0

𝑚1

𝑢

𝑚
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Definition Tensor IPO
ℂ has all tensor IPO if the square 𝑎0 ⋅ 𝑎0 ⊗ id𝑚0

= 𝑎1 ⋅ 𝑎1 ⊗ id𝑚1
 is

an IPO ∀𝑎𝑖 : 0 → 𝑚𝑖 where 𝑚𝑖 ∈ 𝑍 .

↑𝑎0

↑

𝑎1

↑

id𝑚0
⊗ 𝑎1

↑

𝑎0 ⊗ id𝑚1

0 𝑚0

𝑚1 𝑚0 ⊗ 𝑚1
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Proposition if ℂ has all redex-RPO and all tensor-IPO
𝑎 ~ 𝑏 ⇒ ∀𝐶 𝐶[𝑎] ~ 𝐶[𝑏]
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Example

Consider a system with a reaction rule: (𝛾(𝛼), 𝛼′)

With one hole contexts:

↑𝛼′

↑

𝛾(𝛼)

↑

𝛽(𝛼′, ⋅)

↑

𝛽(⋅, 𝛾(𝛼))

0 1

1 1
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Example
Consider a system with a reaction rule: (𝛾(𝛼), 𝛼′)

With multi hole contexts:

↑𝛼′

↑

𝛾(𝛼)

↑

𝛽(𝛼′, ⋅)

↑

𝛽(⋅, 𝛾(𝛼))
↑

⟨⋅, 𝛾(𝛼)⟩

↑⟨𝛼′, ⋅⟩

↑

𝛽(⋅1, ⋅2)

0 1

1 1

2
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In CCS it doesn't work

For example the term 𝑎. 0| ̄𝑎. 0 can perform the following
transitions: 𝑎. 0| ̄𝑎. 0 ⟶

𝜏
0, 𝑎. 0| ̄𝑎. 0 ⟶

𝑎
𝑎. 0 and 𝑎. 0| ̄𝑎. 0 ⟶

̄𝑎
̄𝑎. 0

that should give us the following 3 IPOs:

↑𝑎. 0| ̄𝑎. 0

↑𝑎. 0| ̄𝑎. 0 ↑ ⋅

↑

⋅

↑𝑎. 0| ̄𝑎. 0

↑𝑎. 0| ̄𝑎. 0 ↑⋅ |𝑎
↑

⋅ |𝑎

↑𝑎. 0| ̄𝑎. 0

↑𝑎. 0| ̄𝑎. 0 ↑⋅ | ̄𝑎

↑

⋅ | ̄𝑎

Clearly we can “factorize” ⋅ |𝑎 and ⋅ | ̄𝑎 and obtain ⋅ hence the last 2
diagrams can’t be IPOs.
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Thanks for the attention!
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